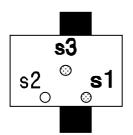
6 「ライントレース」制御に挑戦 ~ センサ(s1, s2)に注目~

< 基本的な考え方 > 左右 2 個のセンサ(s1, s2)でラインをはさむと, 「ラインから外れた場合」, 左右のどちら側に外れたのかが分かる。

したがって,常に「ライン中央に戻す」制御が可能となる。

問題 2個のセンサ(s1, s2)による制御の場合,下図のセンサ入力(10進数) と,モータ出力(10進数)はどうなる? ヒント: poke5 を実行してみよう

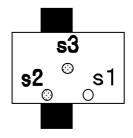


コース (ライン中央) s3 s2 s1

センサ入力(INP)=(1 0 0)₂=____

[s1 = 0 , s2 = 0]なので,<u>制御データは「直進」</u>

モータ出力 = OUT _____

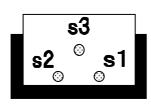


コース (左に少しずれた状態) s3 s2 s1

センサ入力(INP)=(1 0 1)₂=____

[s1 = 1 , s2 = 0]なので,<u>制御データは「右へ軌道修正」</u>

モータ出力 = OUT _____



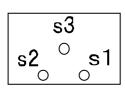
コース (右に少しずれた状態) s3 s2 s1

センサ入力(INP)=(1 1 0)₂=____

[s1 = 0 , s2 = 1]なので,<u>制御データは「左へ軌道修正」</u>

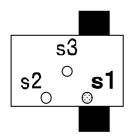
モータ出力 = OUT _____

コース (停止位置)


s3 s2 s1

センサ入力(INP)=(1 1 1)₂=____

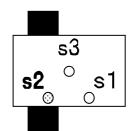
[s1 = 1 , s2 = 1]なので , <u>制御データは「ブレーキ」</u>


モータ出力 = OUT _____

整理してまとめる	センサ入力	モータ出力	センサ入力とモータ出力の関係は
コース			どうなるか?
コース			
コース			
コース			

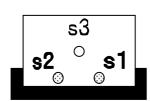
コース (ラインの外) s3 s2 s1 $センサ入力(INP) = (0 0 0)_2 = _______ [s1 = 0 , s2 = 0] なので , <u>制御データは「直進」</u>$

モータ出力 = OUT _____



 コース (左にずれた状態)
 s3 s2 s1

 センサ入力(INP)=(0 0 1)₂=_____


 [s1=1,s2=0]なので, 制御データは「右へ軌道修正」

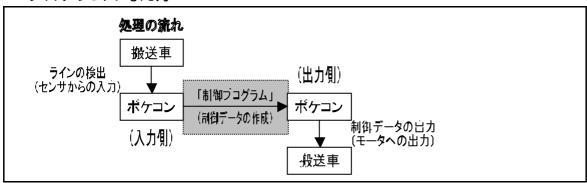
モータ出力 = OUT _____

コース (右にずれた状態) s3 s2 s1 $センサ入力(INP) = (0 1 0)_2 = _______ [s1 = 0 , s2 = 1] なので , <u>制御データは「左へ軌道修正」</u>$

モータ出力 = OUT _____

 コース (停止位置)
 s3 s2 s1

 センサ入力(INP)=(0 1 1)2=


[s1 = 1 , s2 = 1]なので , <u>制御データは「ブレーキ」</u>

モータ出力 = OUT _____

整理してまとめる	センサ入力	モータ出力	センサ入力とモータ出力の関係は
コース			どうなるか?
コース			
コース			
コース			

<u>「ライントレース」制御するプログラムを作ろう(BASICによる制御)</u>

<プログラムの考え方>

<プログラム化>

・フロノフムル	
手順1	ラインの検出(センサからの入力) 🖒 「INP命令」
手順2	制御データの作成 (I F 文(もし,4より小さかったら)+4
手順3	制御データの出力(モータへの出力) 〇 「OUT命令」
手順4	手順1へ戻る

問題 プログラムを作ってみよう。 ヒント: poke6 を実行してみよう

手順 1	10	
手順2	20	
手順3	30	
手順4	40	G O T O 10

自分の「ポケコン」と「搬送車」で試してみよう。

気付いたことをまとめよう。		

[考察]前のページのプログラムで「ライントレース」制御が,

うまくできないのは,なぜ?

<答え> ・・・・ それは、「タイムラグ」が大きいから(下図に注目)

「タイムラグ」とは、

・・・・ センサの状態を知ってから,モータ制御データを出力するまでの 時間的なズレ(遅れ)のこと

< 「タイムラグ」が大きくなる原因とは,何か?>

手順1 (センサ入力)と手順3 (モータ出力)の間に, 手順2 (制御データの作成)があるため

「考察 「タイムラグ」を小さくするには,どうすればいい?

<答え>・・・・・ 魔法の引き出し(=「配列」)を使う

センサ入力とモータ出力の関係を , 魔法の引き出し (= 「配列」) の名前と中身の関係に当てはめると , 以下で示すように , 手順 2 が省略できるのだ。

< センサ入力とモータ出力の関係 >

センサ入力	0	1	2	3	4	5	6	7
モータ出力	4	5	6	7	4	5	6	7
	\bigcup	\bigcup	\bigcup		\bigcup		\bigcup	\bigcup
引き出しの名前	D (0)	D(1)	D (2)	D (3)	D (4)	D (5)	D(6)	D (7)
引き出しの中身	4	5	6	7	4	5	6	7

引き出しの名前(「配列」の各要素)は,先頭からのズレ(オフセット)で指定する。

<プログラム化>

手順 1 ラインの検出(センサからの入力) □ IN P命令」

手順2 ・・・・ 制御データの作成は,不要

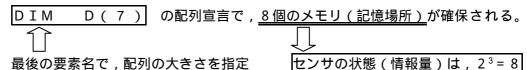
<u> 手順 3 配列データの出力</u> (モータへの出力) □ 「OUT命令」

手順4 手順1へ戻る

配列データの出力とは,

D(0)を指定すると, 4 が出力される。

引き出しの名前 引き出しの中身 =「センサ入力」 =「モータ出力」


<「配列」(=魔法の引き出し)を用いると,>

手順2 (制御データの作成)がなくなるので, 手順1 (センサ入力) と 手順3 (モータ出力)の間の「タイムラグ」が小さくなる。

「配列」を使用する時は,下記のような前処理が必要。

前処理	10	DIM	D	(7)
前処理	20	D(0)	=	4
<i>II</i>	30	D(1)	=	5
<i>II</i>	40	D(2)	=	6
<i>II</i>	50	D(3)	=	7
"	60	D(4)	=	4
"	70	D(5)	=	5
"	80	D(6)	=	6
"	90	D(7)	=	7 ・・・・ 100 行目に続く

10 行目の説明:

問題 前処理の続きを作ってみよう。 ヒント: poke6 を実行してみよう

(手順2は省略)				
手順 1	100			
手順3	110			
手順4	120	GOTO	100	

自分の「ポケコン」と「搬送車」で試してみよう。

しかし、「配列」を用いても、「タイムラグ」を完全に無くすことはできない。 確実に「ライントレース」制御するためには、モータのスピードを遅くする 必要がある。(その方法は,次の章で詳しく説明するよ!)

とりあえず ,「ブレーキ」を入れて実験:どこに入れる?_____ 行目

(それでも、「ライントレース」制御しないときは、何か重い物を乗せてみよう。)

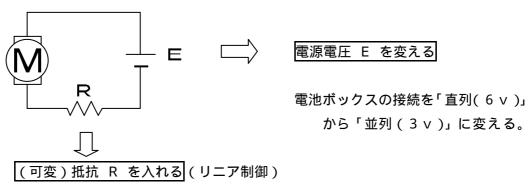
気付いたことをまとめよう。

7 モータの速度制御 ~確実に「ライントレース」制御するために~

確実に「ライントレース制御」するためには,モータのスピードを遅くする 必要がある。以下に,その方法を示す。

(1)ギアボックスのギア比を変える

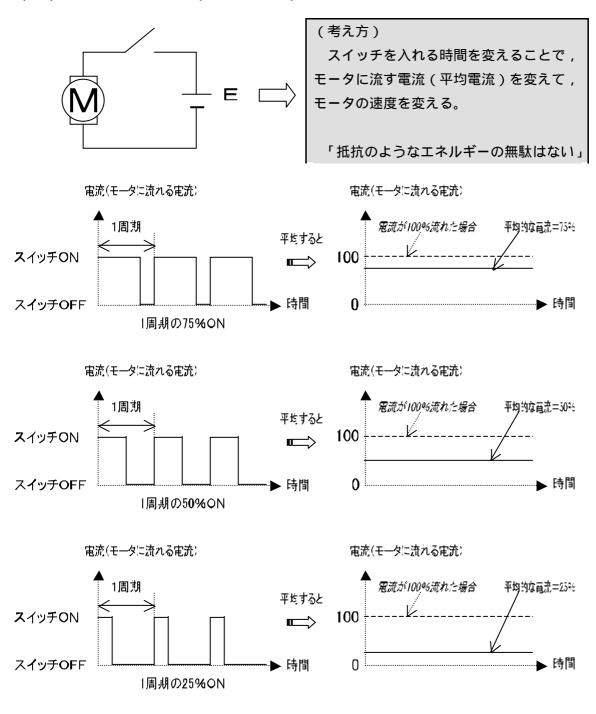
ギア比	64.8:1	41.7:1
最高効率時の 1 分間の		
出力軸の回転数 [rpm]	約160	約250
最高効率時の		
出力軸の回転トルク [g/cm]	約1040	約670


速度の遅いほうが,「タイムラグ」が小さくなる。

(2)ポケコン搬送車を改造する

・・・・モータに流す電流を変えて、モータの速度を変える

「オームの法則」より


電流 (I = E / R) を変えるには 、「電源電圧 E を変える」か 、「(可変)抵抗 R を [電源] と [モータ] の間に直列に入れる」。

・・・・抵抗でエネルギーの一部が熱に変わる。

(1)の方法も,(2)の方法も有効な手段ではあるが,モータの速度を「プログラム」で制御することはできない。

(3)パルス幅変調方式(PWM制御)

スイッチのON / OFFは ,「プログラム」で制御することができる。

ということは、「PWM制御」行うプログラムを作成することができる。

(この場合,搬送車の改造を行う必要はない)

【プログラムによる P W M 制御 (考え方)】

「スイッチONの時間」と「スイッチOFFの時間」の単位時間(=長さ1) を同じにする。

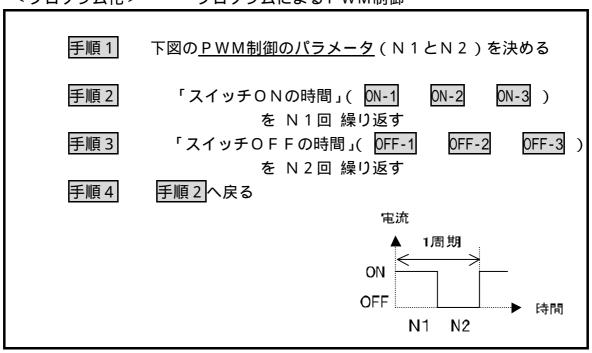
「スイッチONの時間」(単位時間)の定義

 ON-1
 X = INP
 ・・・・
 ラインの検出

 ON-2
 OUT D(X)
 ・・・・
 制御データの出力

 ON-3
 PRINT X
 ・・・・
 センサ入力の表示

上の手順は、「ライントレース」制御するために、最低限必要なことである。


「スイッチOFFの時間」(単位時間)の定義

 OFF-1
 X = INP
 ・・・・
 ラインの検出

 OFF-2
 OUT 7
 ・・・・
 ブレーキの出力

 OFF-3
 PRINT X
 ・・・・
 センサ入力の表示

<プログラム化> ~ プログラムによる P W M 制御~

問題 次のプログラムを完成させよう。ヒント: poke7 を実行してみよう

	5	' SAVE " PWM - B " この名前で保存しよう
前処理 前処理 " " " " "	10 20 30 40 50 60 70 80	
"	90	D(7) = 7
手順 1	100 110	I N P U T " スイッチ 0N= " ; N 1 I N P U T " スイッチ 0FF= " ; N 2
手順2	120	F O R T = 1 T O N1
	130	
	140	
	150	N E X T T
手順 3	160	F O R T = 1 T O N2
	170	
	180	
	190	N E X T T
手順4	200	G O T O 120

実験 1 「スイッチOFF」を1に固定して「スイッチON」を1,2,3,・・・と大きくしていくと、「ポケコン搬送車」の動きはどう変わるか?

気付いたことをまとめよう。
字段 2
実験 2 「スイッチON/OFF」ともに1,ともに2,ともに3,・・・
レナキノレブロイト 「ポケコン伽洋市」の動きはどう亦わるか?
と大きくしていくと ,「ポケコン搬送車」の動きはどう変わるか?
気付いたことをまとめよう。
1